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Example 2.2 (similar to M&K 5ed 2/63)
You are standing on top of the roof of a house. The house has a garage attached
to the side of the house. You throw a baseball, releasing it from point A with a
horizontal velocity. Find the necessary throwing speed so that the baseball just
clears the corner of the garage, point B, and find the location of point C where
the ball hits the ground.
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We first define our coordinate system choosing the point on the ground where
the garage joins the house as the origin. Next, we write the given information
in vector form.

rA = 8ĵ (2.14)

vA = vAî (2.15)

a = −9.81ĵ (2.16)

Let’s say it takes tB seconds for the ball to travel from A to B. At point B,
the position vector is rB = 6î + 4ĵ. We can substitute these vectors into the
constant-acceleration equation.

rB = rA + vAtB +
1
2
at2B (2.17)

6î + 4ĵ = 8ĵ + vAtB î − 9.81
2

t2B ĵ (2.18)

Next, we extract the scalar equations to get two equations for the two unknowns:
vA and tB.

6 = vAtB (2.19)

4 = 8 − 9.81
2

t2B

Solving for the unknowns: tB = 0.903 s and vA = 6.64 m/s.
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To find the point of impact, let’s say it takes tC seconds for the ball to travel
from A to C. At point C, the position vector is rC = (6 + s)î.

rC = rA + vAtC +
1
2
at2C (2.20)

(6 + s)î = 8ĵ + vAtC î − 9.81
2

t2C ĵ (2.21)

We can extract the scalar equations, using the solution for vA that we just
found.

6 + s = 6.64tC (2.22)

0 = 8 − 9.81
2

t2C

Solving for the unknowns: tC = 1.277 s and s = 2.49 m.
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Example 2.5
An airtraffic control radar is tracking an airplane flying eastward with constant
velocity of 290 ft/sec. At the current instant, θ = 45◦ and r = 30, 000 ft. Find
ṙ, θ̇, r̈, and θ̈.

θ r

v

Sketching our coordinate vectors, êr points from the radar toward the air-
plane, and êθ is perpendicular to êr pointing down and to the right. We can
use Eq. (2.34) to write the velocity vector.

v = ṙêr + 30, 000 θ̇êθ (2.45)

What other information do we have about the velocity vector? We know that
the velocity is 290 ft/sec to the east. We can write this in vector format.

v = 290 (sin 45◦êr + cos 45◦êθ) = 205.06êr + 205.06êθ ft/sec (2.46)

From the previous two equations, we can now extract scalar equations.

ṙ = 205.06 ft/sec (2.47)

30, 000 θ̇ = 205.06 ⇒ θ̇ = 0.006835 rad/sec (2.48)

To find r̈ and θ̈ we need to consider the acceleration of the airplane.

a =
(
r̈ − 30, 000 · 0.0068352

)
êr +

(
30, 000 θ̈ + 2 · 205.06 · 0.006835

)
êθ (2.49)

From the given information that the velocity is constant, however, we know the
acceleration is zero: a = 0êr + 0êθ. From this, we write two scalar equations.

r̈−30, 000 ·0.0068352 = 0 30, 000 θ̈+2 ·205.06 ·0.006835 = 0 (2.50)

Solving for the unknowns, r̈ = 1.40 ft/sec2 and θ̈ = −9.34 · 10−5 rad/sec2.



20 CHAPTER 2. PARTICLE KINEMATICS

Example 2.6
A bullet is fired with a velocity of 1000 m/s upward at an angle of 10◦. The
bullet’s acceleration has two components: gravity g = 9.81m/s2 and aerody-
namic drag d = 1160 m/s2 which acts opposite the velocity. Find the radius of
curvature of the bullet’s trajectory and the rate at which the bullet’s speed is
changing.

10o

v

g

d

Starting with sketching the coordinate vectors, êt is parallel to the velocity
pointing to the right and slightly up, and ên points down and slightly to the
right. Based on our kinematic expression, we can write the acceleration vector
as the following.

a = v̇êt +
10002

ρ
ên (2.55)

From the given information, we know that the acceleration vector is composed
of two physical components. The drag component acts opposite the velocity
vector, in the −êt direction. The gravity component acts straight down with
components in both directions.

a = −1160êt + 9.81 (cos 10◦ên − sin 10◦êt) (2.56)

From these two expressions for the acceleration vector, we extract the scalar
equations.

v̇ = −1160− 9.81 sin10◦ (2.57)

10002

ρ
= 9.81 cos10◦ (2.58)

Solving for the unknowns, v̇ = −1162 m/s2 and ρ = 103, 500 m = 103.5 km.
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3.3 Example Problems

Example 3.1
Consider a fuzzy die hanging on a cord from the rearview mirror of a car. The
car is decelerating at 0.2g. Find the steady-state angle the cord makes with the
vertical.

θi
^

j
^

1. Kinematics - Let’s use the coordinate vectors indicated in the diagram. In the
steady-state condition, the die’s acceleration is the same as the car: a = 0.2gî.
2. FBD - In sketching your own FBD, the only forces acting on the die are
gravity, mg, and the tension in the cord, T . The resulting force expression is
ΣF = T sin θî + (T cos θ − mg)ĵ.
3. N2L - Substituting into Newton’s second law:

T sin θî + (T cos θ − mg)ĵ = 0.2mgî (3.5)

Extracting scalar equations of motion:

T sin θ = 0.2mg (3.6)
T cos θ − mg = 0

From these equations, solve for θ.

tan θ = 0.2 ⇒ θ = 11.31◦ (3.7)
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Example 3.3
The rod rotates about B in the horizontal plane with a constant angular rate
θ̇ = 0.05 rad/s. Collar A has a mass of 0.3 kg and slides along the rod without
friction. At the current instant, the collar is at a radius of r = 0.15 m and is
sliding along the rod with ṙ = 0.2 m/s. Find the value of r̈ and the force exerted
on the collar by the bar.

0.15 m

θ = 0.05 rad/s
.

A

B

1. Kinematics - Choosing polar coordinate vectors, êr points along the rod, and
êθ points up and to the left. Using the given information, we can write an
expression for the acceleration vector.

a =
(
r̈ − 0.15 · 0.052

)
êr + (0 + 2 · 0.2 · 0.05) êθ (3.13)

=
(
r̈ − 3.75 · 10−4

)
êr + 0.02êθ

2. FBD - In sketching your own FBD, the rod exerts a force N on the collar.
The force is perpendicular to the rod, but we’re not sure if it’s in the positive or
negative êθ direction. So for now, let’s just guess it’s in the positive êθ direction.

ΣF = N êθ (3.14)

Of course, gravity is also acting on the collar. But since we’re focused on the
motion in the horizontal plane, we can neglect gravity.
3. N2L - Note that the collar has a mass of 0.3 kg.

N êθ = 0.3
[(

r̈ − 3.75 · 10−4
)
êr + 0.02êθ

]
(3.15)

Extracting scalar equations of motion:

0 = 0.3
(
r̈ − 3.75 · 10−4

)
(3.16)

N = 0.3 · 0.02

From these equations, r̈ = 3.75 · 10−4 m/s2 and N = 0.006 N. We had guessed
that N acts in the positive êθ direction. Since we got a positive answer for N ,
this guess must have been correct.
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Example 3.11
Block A has a mass of 50 kg, and block B has a mass of 10 kg. The coefficients
of friction between blocks A and B are μs = 0.5 and μk = 0.3. Neglect any
friction between block B and the ground. Find the acceleration of each block
when a force of (a) P = 200 N and (b) P = 300 N is applied to block B.

P

A

B

In this problem, we need to analyze the motion of both blocks A and B.
We’ll start by assuming static friction between the blocks.
1. Kinematics - Rectangular coordinates with î pointing to the right and ĵ
pointing up will be convenient for this problem. Under static friction, both A
and B have the same acceleration, but the magnitude is unknown.

aA = aB = aî (3.65)

Note, the static-friction assumption does not mean the blocks have zero accel-
eration!
2. FBD - The forces acting on A are its weight, a normal force N1 from B, and
the friction force f from B. Let’s guess f pushes A to the right.

ΣFA = f î + (N1 − 50g) ĵ (3.66)

Two of the forces acting on B are its weight and a normal force N2 from the
ground. Also, the two forces N1 and f that B exerts on A must be exerted in
equal magnitude but opposite direction by A on B. And of course, there is the
applied force P .

ΣFB = (P − f) î + (N2 − N1 − 10g) ĵ (3.67)

3. N2L - We apply Newton’s second law to each body.

A : f î + (N1 − 50g) ĵ = 50aî (3.68)

B : (P − f) î + (N2 − N1 − 10g) ĵ = 10aî

From these two vector equations, we can extract four scalar equations of motion.

f = 50a

N1 − 50g = 0 (3.69)
P − f = 10a

N2 − N1 − 10g = 0

Solving for the unknowns, a = P/60, f = 5P/6, N1 = 490.5 N, and N2 = 588.6
N. From this solution, the maximum possible static friction force is fmax =
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μsN1 = 245.25 N. For P = 200 N, the required friction force is only f = 166.67
N, and the acceleration is a = 3.33 m/s2. Comparing f to fmax, the static
assumption was good; so we’re done.

For P = 300 N, however, the required friction force is f = 250 N, which
is greater than the maximum possible friction force. Block A will actually be
sliding to the left relative to block B in this case. We have to rework the problem
using this realization.
1. Kinematics - Blocks A and B will actually have two different accelerations.

aA = aAî aB = aB î (3.70)

2. FBD - Because block A is sliding to the left relative to block B, the kinetic
friction force f = μkN1 is applied acting to the right on block A (and acting to
the left on block B).

ΣFA = μkN1î + (N1 − 50g) ĵ (3.71)

ΣFB = (P − μkN1) î + (N2 − N1 − 10g) ĵ

3. N2L - We apply Newton’s second law to each body.

A : μkN1î + (N1 − 50g) ĵ = 50aAî (3.72)

B : (P − μkN1) î + (N2 − N1 − 10g) ĵ = 10aB î

From these two vector equations, we can extract four scalar equations of motion.

μkN1 = 50aA

N1 − 50g = 0 (3.73)
P − μkN1 = 10aB

N2 − N1 − 10g = 0

The case of P = 300 N gives the following solutions, N1 = 490.5 N, N2 = 588.6
N, aA = 2.943 m/s2, and aB = 15.285 m/s2.
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Example 6.2
The 30 kg block slides 5 m down the ramp from A to B. The coefficient of
kinetic friction between the block and the ramp is 0.3. The speed of the block
at A is 4 m/s down the ramp. Find the speed when the block passes B.

5 m

A

B

20o

We’ll take a look at working this problem using both forms of the work-
energy principle. First, the initial kinetic energy of the crate is TA = 1

230 · 42 =
240 J. Next, we need to consider the work done on the crate as it travels the
ten meters from A to B. The forces acting on the crate are the normal and
friction forces from the chute and weight due to gravity. The normal force acts
perpendicular to the motion of the crate, so it does zero work. The friction
force acts opposite the motion, so it does negative work. The friction force
is related to the normal force, so we still need to use Newton’s second law to
find the normal force. The gravitational force has components parallel and
perpendicular to the chute, but only the component parallel to the chute does
work.

UA→B = −5f + 5mg sin 20◦ = −5μkN + 5mg sin 20◦ (6.10)
= −5μkmg cos 20◦ + 5mg sin 20◦ = 88.455 J

The kinetic energy at B is TB = 1
230v2

B. Applying the work-energy principle:

TA + UA→B = TB

240 + 88.455 =
1
2
30v2

B (6.11)

vB = 4.68 m/s

Now, let’s work this problem using the potential-energy form of the work-
energy principle. In writing the potential energy, let’s define B as having a
height of zero. Therefore, the potential energy at A is VA = mghA = 30 ·
9.81 · 5 sin 20◦ = 503.3 J, and the potential energy at B is VB = mghB = 0.
The friction is the only nonpotential force that does work: UNP,A→B = −5f =
−5μkN = −5μkmg cos 20◦ = −414.8 J.

TA + VA + UNP,A→B = TB + VB

240 + 503.3− 414.8 =
1
2
30v2

B (6.12)

vB = 4.68 m/s
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Whether we think about the mg sin 20◦ component of weight doing work over
the 5 m distance, or think about the weight mg causing a change in potential
energy due to the 5 sin 20◦ height change, it’s two sides of the same coin.



6.1. WORK & ENERGY 125

Example 6.3
A 5 lb slider is released from rest at the top of the smooth rod. Find the
maximum compression of the 20 lb/in spring.

3 ft

The slider is released from rest at the initial point, and therefore has zero
kinetic energy: T1 = 0. Defining the height of the spring in its undeformed
configuration as the reference height, the slider has a potential energy of V1 =
mgh = 5 · 3 = 15 ft · lb.

Since the rod is smooth, the only nonpotential force acting on the slider is
the normal force from the rod, but it does no work: UNP = 0. Because no
nonpotential forces do work, it really doesn’t matter what happens to the slider
between the point of release and the point of maximum compression.

The maximum compression of the spring will come, at the instant when
the slider will again have zero kinetic energy: T2 = 0. At this instant there
will be elastic potential energy in the spring, and the slider will have negative
gravitational potential energy, since the compression in the spring will actually
drop the slider below the reference height: V2 = 1

2kx2 −mgx = 1
220 · 12x2 − 5x,

where x is the spring compression in feet. Applying the work-energy principle:

T1 + V1 + UNP = T2 + V2 (6.13)

15 = 120x2 − 5x

x =
9
24

or − 1
3

ft = 4.5 or − 4 in

The quadratic equation for x gives two answers: one positive and one negative.
The positive answer corresponds with compression of the spring. The negative
answer corresponds represents if the collar had bounced back up the rod with
the spring attached, stretching it. The work-energy principle can only tell us
that these two solutions both have the correct amount of energy. It’s up to us to
recognize that the collar actually compresses the spring with the answer x = 4.5
in.



138 CHAPTER 6. ALTERNATIVE CONCEPTS

Example 6.9 (M&K 6ed 3/230)
The small spheres, which have the masses and initial velocities shown in the
figure, strike and become attached to the spiked ends of the rod, which is freely
pivoted at fixed point O and is initially at rest. Determine the angular velocity
ω of the assembly after impact. Neglect the mass of the rod.

2m

m3v

v

L

L

O

Define time 1 before the spheres impact the rod, and time 2 after the entire
assembly is rotating about O. Define k̂ pointing up from the table shown in
the diagram. At time 1, the 2m sphere has an angular momentum about O of
2mvLk̂, and the m sphere has an angular momentum about O of 3mvLk̂.

During the collision, forces act between each sphere and the spikes, and the
rod may also experience some reaction forces at O. If we consider the system
consisting of the two spheres and the rod, then the interaction forces between
the spheres and the spikes impart zero net angular impulse on the system. The
reaction forces at O generate zero moments about O, and therefore also impart
zero net angular impulse about O. Once the system starts rotating about O,
there must be some tension in the rod pulling the spheres through their new
circular trajectories. But these forces also generate zero moment about O.
Therefore, from time 1 to time 2, there is zero net angular impulse on the
system.

At time 2, both spheres have a speed of ωL. The angular momentum about
O of the 2m sphere is now 2m(ωL)Lk̂, and the angular momentum about O of
the m sphere is m(ωL)Lk̂. Assume the rod has negligible mass so we don’t have
to worry about its angular momentum. Substitute all of the above information
into the angular momentum-impulse principle.

hO,1 = hO,2 ⇒ 2mvLk̂ + 3mvLk̂ = 2m(ωL)Lk̂ + m(ωL)Lk̂

5mvL = 3mωL2 (6.43)

ω =
5v

3L
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Example 4.3
The end B of the bar moves in a horizontal channel to the right at a constant
speed of 3 m/s. The end A of the bar moves in a vertical channel. At the
instant when θ = 30◦, find the angular velocity and angular acceleration of the
bar. Also, find the velocity and acceleration of A.

θ

2 m

B

A

A. Define î pointing to the right, ĵ pointing up, and k̂ pointing out of the page.
B. The magnitude of the angular velocity is unknown, but it’s clear it will be in
the positive k̂ direction: ω = ωk̂. The magnitude of the angular acceleration is
unknown, and it’s not even clear what the direction will be. Let’s guess α = αk̂.
C. Let’s use B as a reference point: vB = 3î and aB = 0. We also need the
position of A relative to B.

rA/B = 2
(
cos 30◦î + sin 30◦ĵ

)
=

√
3î + ĵ (4.15)

D. From this we can calculate the velocity and acceleration of A.

vA = vB + ω × rA/B

= 3î + ωk̂ ×
(√

3î + ĵ
)

(4.16)

= (3 − ω) î +
√

3ωĵ

aA = aB + α × rA/B + ω × (ω × rA/B

)
= αk̂ ×

(√
3î + ĵ

)
+ ωk̂ ×

(
−ωî +

√
3ωĵ

)
(4.17)

= −
(
α +

√
3ω2

)
î +

(√
3α − ω2

)
ĵ

Physically, we know the velocity and acceleration of A are in the vertical direc-
tion: vA = vAĵ and aA = aAĵ. From these two vector equations, we get four
scalar equations.

0 = 3 − ω

vA =
√

3ω (4.18)

0 = α +
√

3ω2

aA =
√

3α − ω2

Solving for the unknowns: ω = 3 rad/s, α = −9
√

3 rad/s2, vA = 3
√

3 m/s,
aA = −36 m/s2.
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4.4 Rolling Wheels

Rolling wheels are one type of rigid-body kinematics problem.

Example 4.6
Consider a wheel that is rolling without slipping. This means that the point
of contact (the part of the wheel that is touching the ground) has the same
velocity as the ground, i.e. zero. It doesn’t mean that the point of contact has
zero acceleration. If we come back an instant later, that same piece of the wheel
will no longer be the point of contact and will have nonzero velocity.

r

O

C

ω
α

i
^

j
^

Let’s find the velocity of O, the center of the wheel.
A. The î and ĵ directions are shown in the diagram. To keep a right-handed
coordinate system, k̂ points out of the page.
B. Based on the indicated directions, ω = −ωk̂ and α = −αk̂.
C. We can use C as a reference point, since we know its velocity: vC = 0. The
position of O relative to C is rO/C = rĵ.
D. From this we can calculate the velocity of O.

vO = vC + ω × rO/C = −ωk̂ × ĵ = ωrî (4.29)

Using calculus, we can find the acceleration of O.

aO =
d
dt

(vO) = αrî (4.30)

For good measure, let’s find the acceleration of C. Steps A and B don’t change.
C. Since we found the acceleration of O, we can now use it as a reference point.
The position of C relative to O is rC/O = −rĵ.
D. Calculate the acceleration of C.

aC = aO + α × rC/O + ω × (ω × rC/O

)
= αrî +

(
−αk̂

)
×
(
−rĵ

)
+
(
−ωk̂

)
×
[(

−ωk̂
)
×
(
−rĵ

)]
(4.31)

= ω2rĵ

Thus the point of contact is accelerating up off the ground. Now that the we’ve
found the velocity and acceleration of the center and point of contact of a wheel
rolling without slipping, we can use these results in other problems.
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4.5 Mechanisms

Mechanisms made up of multiple rigid bodies are another type of rigid-body
kinematics problem. Each body has its own angular velocity and angular accel-
eration. We’ll apply the same steps to these problems, just working from one
end of the mechanism to the other. In doing this, we take advantage of the fact
that a joint is a point on both of the bodies that it connects.

Example 4.9 (Similar to M&K 5ed 5/128)
Consider the mechanism made of links OB and BA. Link OB has length 1 m,
and link AB has length

√
2 m. Link OB is rotating counter clockwise with a

constant angular velocity of 2 rad/s. Point A rides in a vertical channel and at
the current instant is 1 m to the right of point O. We want to find the angular
velocity and angular acceleration of link AB.

O

B

A

2 rad/s

i

j
^

^

A. The coordinate vectors are shown in the diagram.
B. The angular velocity and angular acceleration of OB are known, but the
angular velocity and angular acceleration of AB are unknown.

ωOB = 2k̂ ωAB = ωABk̂

αOB = 0 αAB = αABk̂
(4.43)

C. First, we use point O as a reference point to investigate point B.

vO = aO = 0 rB/O = 1ĵ (4.44)

D. From the above information, we can find the velocity and acceleration of
point B.

vB = vO + ωOB × rB/O = 2k̂ × 1ĵ = −2î (4.45)

aB = aO + αOB × rB/O + ωOB × (ωOB × rB/O

)
= 2k̂ ×

(
2k̂ × 1ĵ

)
= 2k̂ ×−2î (4.46)

= −4ĵ
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C. Now, we can use point B as a reference point to investigate point A.

rA/B = 1î − 1ĵ (4.47)

D. From the above information, we can find the velocity and acceleration of
point A.

vA = vB + ωAB × rA/B

= −2î + ωABk̂ ×
(
1î − 1ĵ

)
(4.48)

= (ωAB − 2) î + ωAB ĵ

aA = aB + αAB × rA/B + ωAB × (ωAB × rA/B

)
= −4ĵ + αAB k̂ ×

(
1î − 1ĵ

)
+ ωABk̂ ×

(
ωAB î + ωAB ĵ

)
(4.49)

=
(
αAB − ω2

AB

)
î +

(
αAB + ω2

AB − 4
)
ĵ

However, we know the velocity and acceleration of A must be in the vertical
direction: vA = vAĵ and aA = aAĵ.

ωAB − 2 = 0
ωAB = vA (4.50)

αAB − ω2
AB = 0

αAB + ω2
AB − 4 = aA

From these scalar equations, we find ωAB = 2 rad/s, vA = 2 m/s, αAB =
4 rad/s2, and aA = 4 m/s2.
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Example 4.12
As the satellite moves through its orbit, its center of mass has a speed of 7740
m/s and an acceleration 9.01 m/s2. The satellite is rotating at a rate of 0.5
rad/s and slowing down at 0.1 rad/s2. Additionally, the satellite is extending a
boom at a rate of 2 m/s and speeding up at 4 m/s2. At the instant shown, the
boom is extended a distance of d = 7 m. Calculate the velocity and acceleration
of the end of the boom A.

3 m d

aG

vG

ω

G
A

A. Use coordinate vectors with î pointing to the right, ĵ pointing up, and k̂
pointing out of the page.
B. Write the angular velocity and angular acceleration of the satellite.

ω = 0.5k̂ rad/s α = −0.1k̂ rad/s2 (4.75)

C. Use G as the reference point.

vG = 7740î m/s aG = −9.01ĵ m/s2 rA/G = 10î m (4.76)

D. The relative velocity and relative acceleration describe how A is moving
relative to the satellite.

vrel = 2î m/s arel = 4î m/s2 (4.77)

E. Evaluate the velocity and acceleration of A.

vA = vG + ω × rA/G + vrel (4.78)

= 7740î + 0.5k̂ × 10î + 2î

= 7742î + 5ĵ m/s

aA = aG + α × rA/G + ω × (ω × rA/G

)
+ 2ω × vrel + arel (4.79)

= −9.01ĵ − 0.1k̂ × 10î + 0.5k̂ × 5ĵ + 2
(
0.5k̂

)
× 2î + 4î

= 1.5î − 8.01ĵ m/s2 (4.80)
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5.4 Example Problems

Example 5.4 (M&K 5ed 6/33)
The uniform 20 kg slender bar is pivoted at O and swings freely in the vertical
plane. If the bar is released from rest in the horizontal position, calculate the
initial values of the angular acceleration and the reaction forces at O.

O
1.6 m

1. Kinematics - Use rectangular coordinates with î to the right, ĵ up, and k̂
out of the page. As released from rest the angular velocity is zero, but we can
expect the angular acceleration to be clockwise: ω = 0 and α = −αk̂. The
center of mass G is in the middle of the bar. We can use point O as a reference
point to find the acceleration of G.

aO = 0 rG/O = 0.8î (5.25)

aG = aO + α × rG/O + ω × (ω × rG/O

)
(5.26)

= −αk̂ × 0.8î = −0.8αĵ

2. FBD - Drawing your own FBD, the weight mg acts downward through the
center of mass, and let’s guess the reaction forces Rx and Ry act to the right
and up, respectively, at O.

ΣF = Rxî + (Ry − mg) ĵ (5.27)

We can sum moments about either G or O. We’ll work it both ways, but let’s
start with G.

ΣMG = −0.8Ryk̂ (5.28)

3. EoM - Substitute the above results into the equations of motion.
ΣF = maG:

Rxî + (Ry − mg) ĵ = m
(
−0.8αĵ

)
⇒ Rx = 0

Ry − mg = −0.8mα
(5.29)

ΣMG = IGα:

−0.8Ryk̂ =
m1.62

12

(
−αk̂

)
⇒ −0.8Ry = −m1.62

12
α (5.30)

Solving for the three equations of motion for the unknowns, Rx = 0, Ry = 49.05
N, and α = 9.20 rad/s2.

Now, let’s go back and work the problem summing moment about O, just
to show that we get the same answer.



92 CHAPTER 5. PLANAR RIGID-BODY KINETICS

2. FBD - Summing moments about O is actually convenient, because neither of
the unknown reaction forces generate moments about O.

ΣMO = −0.8mgk̂ (5.31)

3. EoM - We write the new rotational equation of motion using the moment and
mass moment of inertia about O.
ΣMO = IOα:

−0.8mgk̂ =
m1.62

3

(
−αk̂

)
⇒ −0.8mg = −m1.62

3
α (5.32)

Combining with Equation (5.29), gives an alternate set of three equations of mo-
tion. These questions are actually a little easier to solve: Rx = 0, Ry = 49.05
N, and α = 9.20 rad/s2.
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Example 5.9
Block A is attached by a cable to a pulley whose center is the fixed axis O.
The block has a weight of 30 lbs. The pulley has a weight of 50 lbs, an inner
radius of 2 ft, and a radius of gyration of 1.75 ft. Find the acceleration of A, the
angular acceleration of the pulley, and the tension in the cable, (a) assuming
the pulley axis has zero friction, and (b) a 10 ft·lb moment due to friction acts
at the pulley axis.

O

A

2 ft

In particle kinetics, we looked at many problems involving pulleys. But in
those previous problems, we implicitly assumed that the pulleys had negligible
mass. In this problem, the dynamics of the large, massive pulley needs to be
addressed, along with the block. Let’s do part (a) first.
1. Kinematics - Use rectangular coordinates with î to the right, ĵ up, and k̂
out of the page. The angular acceleration of the pulley is going to be in the
clockwise direction: α = −αk̂. Point O is the center of mass of the pulley and
has zero acceleration: aO = 0. We don’t have to worry about any rotation of
the block, but the acceleration is aA = −2αĵ.
2. FBD - We need to draw a FBD for each body. The pulley has the tension in
each cable, reaction forces at O, and weight acting on it.

ΣFP = Rxî + (Ry − T − 50) ĵ (5.56)

Since O is the center of mass of the pulley, it is our only choice to sum moments
about.

ΣMO = −2T k̂ (5.57)

We also need to sum the forces acting on the block.

ΣFA = (T − 30) ĵ (5.58)



100 CHAPTER 5. PLANAR RIGID-BODY KINETICS

3. EoM - Substituting into the equations of motion.
ΣFP = mP aO:

Rxî + (Ry − T − 50) ĵ = 0 ⇒ Rx = 0
Ry − T − 50 = 0 (5.59)

ΣMO = IOα:

−2T k̂ =
(

50
32.2

· 1.752

)(
−αk̂

)
⇒ 2T =

153.125
32.2

α (5.60)

ΣFA = mAaA:

(T − 30) ĵ =
30

32.2

(
−2αĵ

)
⇒ T − 30 = − 60

32.2
α (5.61)

Solving these four equations, α = 7.07 rad/sec2 and T = 16.8 lb. This gives the
acceleration of A as 14.2 ft/sec2.

For part (b), the only change we need to make is to include the pure moment
due to friction in ΣMO.
2. FBD - The friction moment acts in the counter clockwise direction, resisting
the pulley’s angular acceleration.

ΣMO = (−2T + 10) k̂ (5.62)

3. EoM - Only the rotational equation changes.
ΣMO = IOα:

(−2T + 10) k̂ =
(

50
32.2

· 1.752

)(
−αk̂

)
⇒ 2T − 10 =

153.125
32.2

α (5.63)

Solving the new set of equations gives α = 5.89 rad/sec2 and T = 19.0 lb, giving
the acceleration of A as 11.8 ft/sec2.
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Example 6.6
The rectangular plate is hinged at corner O and rotates in a vertical plane. If
the plate starts in the orientation shown with an angular velocity of 5 rad/sec,
will it perform complete rotations about O? Or, oscillate like a pendulum?

3 ft

O

4 ft

Since O is a fixed axis, we can calculate the kinetic energy as T1 = 1
2IOω2 =

1
2 (1

3m(32 + 42))52 = 625
6 m. Defining point O as the zero height, the initial

potential energy is V1 = mg(−1.5). As the plate swings, the nonpotential forces
acting on it are the reaction forces at O. But since O is a fixed point, those
forces do zero work. Let’s investigate the configuration when the plate will have
maximum potential energy. This potential energy will be V2 = mg

√
1.52 + 22.

The kinetic energy will be T2 = 1
2 (1

3m(32 + 42))ω2.

T1 + V1 + UNP,1→2 = T2 + V2

625
6

m − m32.2 · 1.5 + 0 =
25
6

mω2 + m32.2
√

1.52 + 22 (6.27)

ω =
√−5.91 = 2.43i (6.28)

The imaginary solution for the angular velocity means it’s impossible for the
plate to reach the orientation with its center of mass directly above O. Instead,
it will oscillate like a pendulum.
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Example 6.10
A platform is resting on a smooth surface, and a cylinder is resting on the
platform. Both the platform and cylinder have weights of 50 lbs. A 10 lb force
is then applied to the platform for 10 seconds. During this period the cylinder
is observed to roll without slip on the platform. Find the speeds of the platform
and the center of the cylinder at the end of the 10 second period.

A
10 lb

r

Define î pointing to the right, ĵ pointing up, and k̂ pointing out of the page.
Consider the system consisting of the platform and cylinder. Initially, both
start at rest, so the system has zero linear momentum. Over 10 seconds, the
10 pound force applies 100 lb·sec of impulse. At the end of the 10 seconds, the
platform will have some velocity vP î, and the center of the cylinder will have a
velocity vC î. Using this information, we can write the linear impulse-momentum
principle.

p1 +
∫ 10

0

ΣFdt = p2

0î + 100î =
50

32.2
vP î +

50
32.2

vC î (6.51)

50 (vP + vC) = 3220 (6.52)

Next, let’s look at the angular momentum of the cylinder by itself. Specif-
ically, let’s look at the angular momentum about the fixed reference point A
labeled in the diagram. Initially, the cylinder has zero angular momentum about
A. During the 10 second period, the forces acting on the cylinder are weight
due to gravity and normal & friction forces exerted by the platform. The an-
gular impulses about A due to the weight and normal forces cancel each other
out. The friction force exerts zero moment about A and therefore zero angular
impulse about A. At the end of the end of the 10 seconds, the cylinder’s angular
momentum about A will be related to the moment of its linear momentum and
its angular velocity ω = ωk̂. Since the cylinder is rolling without slipping on the
moving platform, the velocity of its center and its angular velocity are linked.

vC = vP + ω × rC/P (6.53)

vC î = vP î + ωk̂ × rĵ = (vP − ωr) î

ω =
vP − vC

r
(6.54)
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hA,1 +
∫ 10

0

ΣMAdt = hA,2

0k̂ + 0k̂ = − 50
32.2

vcrk̂ +
1
2
· 50
32.2

r2ωk̂ (6.55)

0 = − 50
32.2

vcr +
25

32.2
r (vP − vC)

25vP − 75vC = 0 (6.56)

Solving these two equations gives vc = 16.1 ft/sec and vp = 48.3 ft/sec. We were
able to find these solutions without ever calculating the friction force between
the platform and cylinder.

Example 6.11
A rectangular block is sliding across a smooth surface with a speed of 1.2 m/s.
It hits a small curb on the surface, causing it to rotate about the lower right
corner. (Neglect the height of the curb.) Find the angular velocity of the block
immediately after it hits the curb.

6 kg

0.2 m

0.3 m

Label the curb as point C, and define k̂ pointing out of the page. The initial
angular momentum of the block about C is hC = −6 · 1.2 · 0.15k̂ = −1.08k̂
N·m·s. During the impact reaction forces at C act on the block. But they
generate zero moment about C, and therefore zero angular impulse about C.
After the impact, the block is rotating about C.

Using this information, we can write the angular impulse-momentum prin-
ciple about C.

hC,1 = hC,2

−1.08k̂ =
(

1
3
6
(
0.22 + 0.32

))(−ωk̂
)

(6.57)

ω = 4.15 rad/sec
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